In this paper, we study the combinatorial properties of \(w\)-IPP (identifiable parents property) codes and give necessary and sufficient conditions for a code to be a \(w\)-IPP code. Furthermore, let \(R(C) = \frac{1}{n}{\log_q|C|}\) denote the rate of the \(q\)-ary code \(C\) of length \(n\), suppose \(q \geq 3\) is a prime power, we prove that there exists a sequence of linear \(q\)-ary \(2\)-IPP codes \(C_n\) of length \(n\) with \(R(C_n) = \frac{1}{3}log\frac{q^3}{4q^2-6q+3}\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.