Multicompetition Numbers of Some Multigraphs

Yongqiang Zhao1, Gerard J.Chang2,2,3
1Department of Mathematics Shijiazhuang University Shijiazhuang 050035, P.R. China
2Department of Mathematics National Taiwan University Taipei 10617, Taiwan
3National Center for Theoretical Sciences Taipei Office, Taiwan

Abstract

In \(1990\), Anderson et al. \([1]\) generalized the competition graph of a digraph to the competition multigraph of a digraph and defined the multicompetition number of a multigraph. The competition multigraph \(CM(D)\) of a digraph \(D = (V, A)\) is the multigraph \(M = (V, E’)\) where two vertices of \(V\) are joined by \(k\) parallel edges if and only if they have exactly \(\ell\) common preys in \(D\). The multicompetition number \(k^*(M)\) of the multigraph \(M\) is the minimum number \(p\) such that \(M \cup I_p\) is the competition multigraph of an acyclic digraph, where \(I_k\) is a set of \(p\) isolated vertices. In this paper, we study the multicompetition numbers for some multigraphs and generalize some results provided by Kim and Roberts \([9]\), and by Zhao and He \([18]\) on general competition graphs, respectively.