On Fractional \((g, f, n)\)-Critical Graphs

Hongxia Lin1,1, Guizhen Liu2
1School of Mathematics and Informational Science, Yantai University Yantai, Shandong 264005, P. R. China
2School of Mathematics, Shandong University Jinan, Shandong 250100, P. R. China

Abstract

Let \(G\) be a graph. Let \(g(x)\) and \(f(x)\) be two nonnegative integer-valued functions defined on \(V(G)\) with \(g(x) \leq f(x)\) for any \(x \in V(G)\). A spanning subgraph \(F\) of \(G\) is called a fractional \((g, f)\)-factor if \(g(x) \leq d_G^h(x) \leq f(x)\) for all \(x \in V(G)\), where \(d_G^h(x) = \sum_{e \in E_x} h(e)\) is the fractional degree of \(x \in V(F)\) with \(E_x = \{e : e = xy \in E(G)\}\). A graph \(G\) is said to be fractional \((g, f, n)\)-critical if \(G – N\) has a fractional \((g, f)\)-factor for each \(N \subseteq V(G)\) with \(|N| = n\). In this paper, several sufficient conditions in terms of stability number and degree for graphs to be fractional \((g, f, n)\)-critical are given. Moreover, we show that the results in this paper are best possible in some sense.