Let \(G\) be a graph. Let \(g(x)\) and \(f(x)\) be two nonnegative integer-valued functions defined on \(V(G)\) with \(g(x) \leq f(x)\) for any \(x \in V(G)\). A spanning subgraph \(F\) of \(G\) is called a fractional \((g, f)\)-factor if \(g(x) \leq d_G^h(x) \leq f(x)\) for all \(x \in V(G)\), where \(d_G^h(x) = \sum_{e \in E_x} h(e)\) is the fractional degree of \(x \in V(F)\) with \(E_x = \{e : e = xy \in E(G)\}\). A graph \(G\) is said to be fractional \((g, f, n)\)-critical if \(G – N\) has a fractional \((g, f)\)-factor for each \(N \subseteq V(G)\) with \(|N| = n\). In this paper, several sufficient conditions in terms of stability number and degree for graphs to be fractional \((g, f, n)\)-critical are given. Moreover, we show that the results in this paper are best possible in some sense.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.