Chromatic Uniqueness of Certain Complete \(4\)-partite Graphs

G.C. Lau1,2, Y.H. Peng3,2, H.H. Chu1
1Faculty of Computer & Mathematical Sciences Universiti Teknologi MARA (Segamat Campus) 85200 Johor, Malaysia
2Institute for Mathematical Research Universiti Putra Malaysia 48400 UPM Serdang, Malaysia
3Department of Mathematics, and Universiti Putra Malaysia 48400 UPM Serdang, Malaysia

Abstract

Let \(P(G,\lambda)\) be the chromatic polynomial of a graph \(G\). A graph \(G\) is chromatically unique if for any graph \(H\), \(P(H,\lambda) = P(G, \lambda)\) implies \(H\) is isomorphic to \(G\). It is known that a complete tripartite graph \(K(a,b,c)\) with \(c \geq b \geq a \geq 2\) is chromatically unique if \(c – a \leq 3\). In this paper, we proved that a complete \(4\)-partite graph \(K(a,b,c,d)\) with \(d \geq c \geq b \geq a \geq 2\) is also chromatically unique if \(d – a \leq 3\).