Chromaticity of Bipartite Graphs With Seven Edges Deleted

H. Roslan1, Y.H. Peng2
1School of Mathematical Sciences Universiti Sains Malaysia, 11800 Penang, Malaysia
2Department of Mathematics, and Institute for Mathematical Research University Putra Malaysia 43400UPM Serdang, Malaysia

Abstract

For integers \(p\), \(q\), \(s\) with \(p \geq q \geq 2\) and \(s \geq 0\), let \(\mathcal{K}_{2}^{-s}(p,q)\) denote the set of \(2\)-connected bipartite graphs which can be obtained from the complete bipartite graph \(K_{p,q}\) by deleting a set of \(s\) edges. F.M.Dong et al. (Discrete Math. vol.\(224 (2000) 107-124\)) proved that for any graph \(G \in \mathcal{K}_{2}^{-s}(p,q)\) with \(p \geq q \geq 3\) and \(0 \leq s \leq \min\{4, q-1\}\), then \(G\) is chromatically unique. In \([13]\), we extended this result to \(s = 5\) and \(s = 6\). In this paper, we consider the case when \(s = 7\).