On the Spectra of Tricyclic Graphs

Ruifang Liu1, Huicai Jia2, Jinlong Shu3
1Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450001, China
2Department of Mathematical and Physical Sciences, Henan Institute of Engineering, Zhengzhou, Henan 451191, China
3Department of Mathematics, East China Normal University, Shanghai, 200241, China

Abstract

Let \(\mathcal{J}_n\) be the set of tricyclic graphs of order \(n\). In this paper, we use a new proof to determine the unique graph with maximal spectral radius among all graphs in \(\mathcal{J}_n\) for each \(n \geq 4\). Also, we determine the unique graph with minimal least eigenvalue among all graphs in this class for each \(n \geq 52\). We can observe that the graph with maximal spectral radius is not the same as the one with minimal least eigenvalue in \(\mathcal{J}_n\), which is different from those on the unicyclic and bicyclic graphs.