On Chromatic Number of Graphs without Certain Induced Subgraphs

Fang Duan1, Baoyindureng Wu1
1College of Mathematic and System Sciences, Xinjiang University, Urumdi, Xinjiang 830046, P. R. China

Abstract

Gyarfas conjectured that for a given forest \(F\), there exists an integer function \(f(F,w(G))\) such that \(\chi(G) \leq f(F,w(G))\) for any \(F\)-free graph \(G\), where \(\chi(G)\) and \(w(G)\) are respectively, the chromatic number and the clique number of G. Let G be a \(C_5\)-free graph and \(k\) be a positive integer. We show that if \(G\) is \((kP_1, + P_2)\)-free for \(k \geq 2\), then \(\chi(G) \leq 2w^{k-1} \sqrt{w}\); if \(G\) is \((kP_1, + P_3)\)-free for \(k \geq 1\), then \(\chi(G) \leq w^k \sqrt{w}\). A graph \(G\) is \(k\)-divisible if for each induced subgraph \(H\) of \(G\) with at least one edge, there is a partition of the vertex set of \(H\) into \(k\) sets \({V_1,… , V_k}\) such that no \(V_i\); contains a clique of size \(w(G)\). We show that a \((2P_1+P_2)\)-free and \(C_5\)-free graph is \(2\)-divisible.