Contents

-

Small Locally nK2 Graphs

F. Larrion1, M.A. Pizana2, R. Villarroel-Flores3
1 Instituto de MatemAticas. Universidad Nacional Aut6noma de México. México, D.F. C.P. 04510.
2Depto. de Ingenieria Eléctrica. Universidad Auténoma Metropolitana, Av. San Rafael Atlixco 186, Col Vicentina, México 09340 D.F. MEXICO.
3Centro de Investigaci6n en Matematicas, Universidad Auténoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Pachuca Hgo. 42184, MEXICO.

Abstract

A locally nK2 graph G is a graph such that the set of neighbors of any vertex of G induces a subgraph isomorphic to nK2. We show that a locally nK2 graph G must have at least 6n3 vertices, and that a locally nK2 graph with 6n3 vertices exists if and only if n{1,2,3,5}, and in these cases the graph is unique up to isomorphism. The case n=5 is surprisingly connected to a classic theorem of algebraic geometry: The only locally 5K2 graph on 6×53=27 vertices is the incidence graph of the 27 straight lines on any nonsingular complex projective cubic surface.