Some New Sufficient Conditions for Graphs to be \((a, b, k)\)-Critical Graphs

Sizhong Zhou1, Zurun Xu1
1School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003 Peoples Republic of China

Abstract

Let \(G\) be a graph, and let \(a\), \(b\) and \(k\) be nonnegative integers with \(1 \leq a \leq b\). An \([a, b]\)-factor of graph \(G\) is defined as a spanning subgraph \(F\) of \(G\) such that \(a \leq d_F(v) \leq b\) for each \(x \in V(G)\). Then a graph \(G\) is called an \((a, b, k)\)-critical graph if after any \(k\) vertices of \(G\) are deleted the remaining subgraph has an \([a, b]\)-factor. In this paper, three sufficient conditions for graphs to be \((a, b, k)\)-critical graphs are given. Furthermore, it is shown that the results in this paper are best possible in some sense.