Minimizing the Least Eigenvalue of Bicyclic Graphs with \(k\) Pendant Vertices

Ruifang Liu1, Huicai Jia2, Jinlong Shu3
1Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450001, China
2Department of Mathematical and Physical Sciences, Henan Institute of Engineering, Zhengzhou, Henan 451191, China
3Department of Mathematics, East China Normal University, Shanghai, 200241, China

Abstract

Let \(\mathcal{B}(n,k)\) be the set of bicyclic graphs with \(n\) vertices and \(k\) pendant vertices. In this paper, we determine the unique graph with minimal least eigenvalue among all graphs in \(\mathcal{B}(n,k)\). This extremal graph is the same as that on the Laplacian spectral radius as done by Ji-Ming Guo(The Laplacian spectral radius of bicyclic graphsmwith \(n\) vertices and \(k\) pendant vertices, Science China Mathematics, \(53(8)(2010)2135-2142]\). Moreover, the minimal least eigenvalue is a decreasing function on \(k\).