Potentially \(K_{1,1,t}\)-Graphic Sequences

Jian-Hua Yin1, Jiong-Sheng Li2, Wen-Ya Li1
1Department of Applied Math, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China.
2Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Abstract

Let \(\omega(K_{1,1,t,}{n})\) be the smallest even integer such that every \(n\)-term graphic sequence \(\pi = (d_1,d_2,\ldots,d_n)\) with \(\sigma(\pi) = d_1+d_2+\cdots+d_n \geq \sigma(K_{1,1,t,}{n})\) has a realization \(G\) containing \(K_{1,1,t,}{n}\) as a subgraph, where \(K_{1,1,t,}{n}\) is the \(1 \times 1 \times t\) complete \(3\)-partite graph. Recently, Lai (Discrete Mathematics and Theoretical Computer Science, \(7(2005), 75-81)\) conjectured that for \(n \geq 2t+4\),

\[\sigma(K_{1,1,t,}{n}) = \begin{cases}
(t+1)(n-1)+2 & \text{if \(n\) is odd or \(t\) is odd,}\\
(t+1)(n-1)+1 & \text{if \(n\) and \(t\) are even.}
\end{cases}\]

In this paper, we prove that the above equality holds for \(n \geq t+4\).