Distance-Dominating Cycles in \(P_3\)-Dominated Graphs

Metrose Metsidik1, Elkin Vumar2
1College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, P. R. China
2College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China

Abstract

Let \(G\) be a connected graph. For \(x,y \in V(G)\) with \(d(x,y) = 2\), we define \(J(x,y) = \{u \in N(x) \cap N(y) | N[u] \cap N[x] \cup N[y]\}\) and \(J'(x,y) = \{u \in N(x) \cap N(y) |\) if \(v \in N(u) \setminus (N[x] \cup N[y])\) then \(N(x) \cup N(y) \cup N(u) \cap N[v]\}\). A graph \(G\) is quasi-claw-free if \(J(x,y) \neq \emptyset\) for each pair \((x,y)\) of vertices at distance \(2\) in \(G\). Broersma and Vumar introduced the class of \(P_3\)-dominated graphs defined as \(J(x,y) \cup J'(x,y) \neq \emptyset\) for each \(x,y \in V(G)\) with \(d(x,y) = 2\). Let \(\kappa(G)\) and \(\alpha_2(G)\) be the connectivity of \(G\) and the maximum number of vertices that are pairwise at distance at least \(2\) in \(G\), respectively. A cycle \(C\) is \(m\)-dominating if \(d(x,C) = \min\{d(x,u) | u \in V(C)\} \leq m\) for all \(x \in V(G)\). In this note, we prove that every \(2\)-connected \(\mathcal{P}_3\)-dominated graph \(G\) has an \(m\)-dominating cycle if \(\alpha_{2m+3}(G) \leq \kappa(G)\).