Independence number and \([a, b]\)-factors of graphs

Siping Tang1
1School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China

Abstract

Let \(G\) be a graph. The cardinality of any largest independent set of vertices in \(G\) is called the independence number of \(G\) and is denoted by \(\alpha(G)\). Let \(a\) and \(b\) be integers with \(0 \leq a \leq b\). If \(a = b\), it is assumed that \(G\) be a connected graph, furthermore, \(a \geq \alpha(G)\), \(a/|V(G)| = 0 \pmod{2}\) if \(a\) is odd. We prove that every graph \(G\) has an \([a, b]\)-factor if its minimum degree is at least \((\frac{b+\alpha(G)a-\alpha(G)}{b})\lfloor \frac{b+\alpha(G)a}{2\alpha(G)} \rfloor -\frac{\alpha(G)}{b}(\lfloor \frac{b+\alpha(G)a}{2\alpha(G)}\rfloor )^2+ \theta\frac{\alpha(G)^2}{b}+\frac{a}{b}\alpha(G)\), where \(\theta = 0\) if \(a < b\), and \(\theta = 1\) if \(a = b\). This degree condition is sharp.