Let \(G\) be a connected graph of order \(p \geq 2\). The closed interval \(I[x,y]\) consists of all vertices lying on some \(x-y\) geodesic of \(G\). If \(S\) is a set of vertices of \(G\), then \(I[S]\) is the union of all sets \(I\{x, y\}\) for \(x, y \in S\). The geodetic number \(g(G)\) is the minimum cardinality among the subsets \(S\) of \(V(G)\) with \(I[S] = V\). A geodetic set of cardinality \(g(G)\) is called a \(g\)-set of \(G\). For any vertex \(z\) in \(G\), a set \(S_x \subseteq V\) is an \(x\)-geodominating set of \(G\) if each vertex \(v \in V\) lies on an \(z-y\) geodesic for some element \(y\) in \(S_z\). The minimum cardinality of an \(x\)-geodominating set of \(G\) is defined as the \(x\)-geodomination number of \(G\), denoted by \(g_x(G)\) or simply \(g_x\). An \(x\)-geodominating set \(S_x\) of cardinality \(g_x(G)\) is called a \(g_x\)-set of \(G\). If \(S_x \cup \{x\}\) is a \(g\)-set of \(G\), then \(x\) is called a geo-vertex of \(G\). The set of all geo-vertices of \(G\) is called the geo-set of \(G\) and the number of geo-vertices of \(G\) is called the geo-number of \(G\) and it is denoted by \(gn(G)\). For positive integers \(r, d\) and \(n \geq 2\) with \(r < d \leq 2r\), there exists a connected graph \(G\) of radius \(r\), diameter \(d\) and \(gn(G) = n\). Also, for each triple \(p, d\) and \(n\) with \(3 \leq d \leq p – 1, 2 \leq n \leq p – 2\) and \(p – d – n + 1 \geq 0\), there exists a graph \(G\) of order \(p\), diameter \(d\) and \(gn(G) = n\). If the \(x\)-geodomination number \(g_x(G)\) is same for every vertex \(x\) in \(G\), then \(G\) is called a vertex geodomination regular graph or for short VGR-graph. If \(S \cup \{x\}\) is same for every vertex \(x\) in \(G\), then \(G\) is called a perfect vertex geodomination graph or for short PVG-graph. We characterize a PVG-graph.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.