Hamiltonian Properties of the \(3-(\gamma,2)\)-Critical Graphs

Zhao Chengye1,2, Yang Yuansheng2, Sun Linlin2
1 College of Science, China Jiliang University Hangzhou , 310018, P. R. China
2 Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. China

Abstract

Ewa Wojcicka (Journal of Graph Theory, \(14(1990), 205-215)\) showed that every connected, 3-color-critical graph on more than 6 vertices has a Hamiltonian path. Henning et al. (Discrete Mathematics, \(161(1996), 175-184)\) defined a graph \(G\) to be \(k\)-\((\gamma, d)\)-critical graph if \(\gamma(G) = k\) and \(\gamma(G + uv) = k – 1\) for each pair \(u, v\) of nonadjacent vertices of \(G\) that are at distance at most \(d\) apart. They asked if a 3-\((\gamma, 2)\)-critical graph must contain a dominating path. In this paper, we show that every connected, 3-\((\gamma, 2)\)-critical graph must contain a dominating path. Further, we show that every connected, 3-\((\gamma, 2)\)-critical graph on more than 6 vertices has a Hamiltonian path.