On the Zeroth-Order General Randić Index of Unicycle Graphs with \(k\) Pendant Vertices

Fan Li1, Mei Lu1
1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.

Abstract

Let \(G\) be a graph. The zeroth-order general Randić index of a graph is defined as \(R_\alpha^0(G) = \sum_{v \in V(G)} d(v)^\alpha(v)\), where \(\alpha\) is an arbitrary real number and \(d(v)\) is the degree of the vertex \(v\) in \(G\). In this paper, we give sharp lower and upper bounds for the zeroth-order general Randić index \(R_\alpha^0(G)\) among all unicycle graphs \(G\) with \(n\) vertices and \(k\) pendant vertices.