Let \(T = PSL(n, q)\) be a projective linear simple group, where \(n \geq 2\),\(q\) a prime power and \((n,q) \neq (2,2)\) and \((2,3)\). We classify all \(3— (v, k, 1)\) designs admitting an automorphism group \(G\) with \(T \unlhd G \leq Aut(T)\) and \(v=\frac{q^n-1}{q-1}.\)
1970-2025 CP (Manitoba, Canada) unless otherwise stated.