Isolated Toughness and Fractional \((g, f)\)-Factors of Graphs

Sizhong Zhou1, Ziming Duan2, Bingyuan Pu3
1 School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003 People’s Republic of China
2 School of Science China University of Mining and Technology Xuzhou, Jiangsu, 221008 People’s Republic of China
3Department of Fundamental Education Chengdu Textile College Chengdu, Sichuan, 610023 People’s Republic of China

Abstract

Let \(G\) be a graph, and let \(a\) and \(b\) be nonnegative integers such that \(1 \leq a \leq b\). Let \(g\) and \(f\) be two nonnegative integer-valued functions defined on \(V(G)\) such that \(a \leq g(x) \leq f(x) \leq b\) for each \(x \in V(G)\). A spanning subgraph \(F\) of \(G\) is called a fractional \((g, f)\)-factor if \(g(x) \leq d_G^h(x) \leq f(x)\) for all \(x \in V(G)\), where \(d_G^h(x) = \sum_{e \in E_x} h(e)\) is the fractional degree of \(x \in V(F)\) with \(E_x = \{e : e = xy \in E(G)\}\). The isolated toughness \(I(G)\) of a graph \(G\) is defined as follows: If \(G\) is a complete graph, then \(I(G) = +\infty\); else, \(I(G) = \min\{ \frac{|S|}{i(G-S)} : S \subseteq V(G), i(G – S) \geq 2 \}\), where \(i(G – S)\) denotes the number of isolated vertices in \(G – S\). In this paper, we prove that \(G\) has a fractional \((g, f)\)-factor if \(\delta(G) \geq I(G) \geq \frac{b(b-1)}{a}+1\). This result is best possible in some sense.