An \(L(2,1)\)-labeling of a graph \(G\) is an assignment of nonnegative
integers to the vertices of \(G\) such that adjacent vertices get numbers
at least two apart, and vertices at distance two get distinct numbers.
The \(L(2,1)\)-labeling number of \(G\), \(\lambda(G)\), is the minimum range of
labels over all such labelings. In this paper, we determine the \(\lambda\)-
numbers of flower snark and its related graphs for all \(n \geq 3\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.