In this study, we obtained lower and upper bounds for the Euclidean norm of a complex matrix \(A\) of order \(n \times n\). In addition,
we found lower and upper bounds for the spectral norms and Euclidean norms of the Hilbert matrix its Hadamard
square root, Cauchy-Toeplitz and Cauchy-Hankel matrices in the forms \(H = \left(\frac{1}{i + j – 1}\right)_{i,j=1}^n\),\(H^{\frac{01}{2}}=(\frac{1}{(i+j-1)}^{\frac{1}{2}})_{i,j=1}^n\); \(T_n = \left[\frac{1}{(g+(i + j)h)}_{i,j=1}^n\right]\), and \(H_n = \left[\frac{1}{(g+(i + j )h}\right]_{i,j=1}^n\), respectively.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.