On the Lower and Upper Bounds for the Euclidean Norm of a Complex Matrix and Its Applications

Ayse Dilek1
1Gungor Selcuk University Faculty of Arts and Science Department of Mathematics 42031, Konya, TURKEY

Abstract

In this study, we obtained lower and upper bounds for the Euclidean norm of a complex matrix \(A\) of order \(n \times n\). In addition,
we found lower and upper bounds for the spectral norms and Euclidean norms of the Hilbert matrix its Hadamard
square root, Cauchy-Toeplitz and Cauchy-Hankel matrices in the forms \(H = \left(\frac{1}{i + j – 1}\right)_{i,j=1}^n\),\(H^{\frac{01}{2}}=(\frac{1}{(i+j-1)}^{\frac{1}{2}})_{i,j=1}^n\); \(T_n = \left[\frac{1}{(g+(i + j)h)}_{i,j=1}^n\right]\), and \(H_n = \left[\frac{1}{(g+(i + j )h}\right]_{i,j=1}^n\), respectively.