A simple graph \(G = (V, E)\) admits an \(H\)-covering if every edge in \(E\) belongs to a subgraph of \(G\) isomorphic to \(H\). We say that \(G\) is \(H\)-magic if there exists a total labeling \(f: V \cup E \rightarrow \{1, 2, \ldots, |V| + |E| + 1\}\) such that for each subgraph \(H’ = (V’, E”)\) of \(G\) isomorphic to \(H\),
\(\sum_{v \in V’} f(v) + \sum_{e \in E”} f(e)\)
is constant.
When \(f(V) = \{1, 2, \ldots, |V|\}\), then \(G\) is said to be \(H\)-supermagic.
In this paper, we show that all prism graphs \(C_n \times P_m\), except for \(n = 4\), the ladder graph \(P_3 \times P_n\), and the grid \(P_3 \times P_n\), are \(C_4\)-supermagic.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.