Consider the following problem: Given a transitive tournament \(T\) of order \(n \geq 3\) and an integer \(k\) with \(1 \leq k \leq \binom{n}{2}\), which \(k\) ares in \(T\) should be reversed so that the resulting tournament has the largest number of spanning cycles? In this note, we solve the problem when \(7\) is sufficiently large compared to \(k\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.