Roman domination number of Generalized Petersen Graphs \(P(n, 2)\)

Haoli Wang1, Xirong Xu2, Yuansheng Yang2, Chunnian Ji2
1College of Computer and Information Engineering Tianjin Normal University, Tianjin, 300387, P. R. China
2Department of Computer Science Dalian University of Technology, Dalian, 116024, P. R. China

Abstract

A \({Roman \;domination \;function}\) on a graph \(G = (V, E)\) is a function \(f: V(G) \to \{0, 1, 2\}\) satisfying the condition that every vertex \(u\) with \(f(u) = 0\) is adjacent to at least one vertex \(v\) with \(f(v) = 2\). The \({weight}\) of a Roman domination function \(f\) is the value \(f(V(G)) = \sum_{u \in V(G)} f(u)\). The minimum weight of a Roman dominating function on a graph \(G\) is called the \({Roman \;domination \;number}\) of \(G\), denoted by \(\gamma_R(G)\). In this paper, we study the Roman domination number of generalized Petersen graphs \(P(n, 2)\) and prove that \(\gamma_R(P(n, 2)) = \left\lceil \frac{8n}{7} \right\rceil (n\geq5)\).