The paper presents two sharp upper bounds for the largest Laplacian eigenvalue of mixed graphs in terms of the degrees and the average \(2\)-degrees, which improve and generalize the main results of Zhang and Li [Linear Algebra Appl.\(353(2002)11-20]\),Pan (Linear Algebra Appl.\(355(2002)287-295]\),respectively. Moreover, we also characterize some extreme graphs which attain these upper bounds. In last, some examples show that our bounds are improvement on some known bounds in some cases.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.