The order dimension is an invariant on partially ordered sets introduced by Dushnik and Miller in \(1941 [1]\). It is known that the computation of the order dimension of a partially ordered set in general is highly complex,with current algorithms relying on the minimal coloring of an associated hypergraph, see \([5]\). The aim of this work is to extend the family of posets whose order dimension is easily determined by a formula. We introduce an operation called layering. Finally, we provide the precise formulas for determining the order dimension of any given number of layers of Trotter’s generalized crowns.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.