Let \(n\) be a positive integer. Denote by \(PG(n,q)\) the \(n\)-dimensional projective space over the finite field \(\mathbb{F}_q\) of order \(q\). A blocking set in \(PG(n,q)\) is a set of points that has non-empty intersection with every hyperplane of \(PG(n,q)\). A blocking set is called minimal if none of its proper subsets are blocking sets. In this note, we prove that if \(PG(n_i,q)\) contains a minimal blocking set of size \(k_i\) for \(i \in \{1,2\}\), then \(PG(n_1 + n_2 + 1,q)\) contains a minimal blocking set of size \(k_1 + k_2 – 1\). This result is proved by a result on groups with maximal irredundant covers.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.