Hammack and Livesay introduced a new graph operation \(G^{(k)}\) for a graph \(G\), which they called the \(k\)th inner power of \(G\). A graph \(G\) is Hamiltonian if it contains a spanning cycle. In this paper, we show that \(C^{(k)}_n(n \geq 3, k \geq 2)\) is Hamiltonian if and only if \(n\) is odd and \(k = 2\), where \(C_n\) is the cycle with \(n\) vertices.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.