The \(2\)-Color Rado Number of \(x_1+x_2+ \ldots + x_{m-1}=ax_m\)

Dan Saracino1
1Colgate University

Abstract

In 1982, Beutelspacher and Brestovansky proved that for every integer \(m \geq 3\), the \(2\)-color Rado number of the equation
\[x_1+x_2+ \ldots + x_{m-1}=x_m\]
is \(m^2 – m – 1\). In 2008, Schaal and Vestal proved that, for every \(m \geq 6\), the \(2\)-color Rado number of
\[x_1+x_2+ \ldots + x_{m-1}=2x_m\]
is \(\left\lceil \frac{m-1}{2}\left\lceil \frac{m-1}{2} \right\rceil \right\rceil \). Here, we prove that, for every integer \(a \geq 3\) and every \(m \geq 2a^2 – a + 2\), the 2-color Rado number of
\[x_1+x_2+ \ldots + x_{m-1}=ax_m\]
is \(\left\lceil \frac{m-1}{a}\left\lceil \frac{m-1}{a} \right\rceil \right\rceil\). For the case \(a = 3\), we show that our formula gives the Rado number for all \(m \geq 7\), and we determine the Rado number for all \(m \geq 3\).