Long Paths Containing \(k\)-Ordered Vertices in Graphs

Emlee W. Nicholson1,2, Bing Wei1
1Department of Mathematics, University of Mississippi University, MS 38677, USA
2Winthrop University Department of Mathematics Rock Hill, SC 29788, USA

Abstract

Let \(G\) be a graph on \(n\) vertices. If for any ordered set of vertices \(S = \{v_1, v_2, \ldots, v_k\}\), where the vertices in \(S\) appear in the sequence order \(v_1, v_2, \ldots, v_k\), there exists a \(v_1-v_k\) (Hamiltonian) path containing \(S\) in the given order, then \(G\) is \(k\)-ordered (Hamiltonian) connected. In this paper, we show that if \(G\) is \((k+1)\)-connected and \(k\)-ordered connected, then for any ordered set \(S\), there exists a \(v_1-v_k\) path \(P\) containing \(S\) in the given order such that \(|P| \geq \min\{n, \sigma_2(G) – 1\}\), where \(\sigma_2(G) = \min\{d_G(u) + d_G(v) : u,v \in V(G); uv \notin E(G)\}\) when \(G\) is not complete, and \(\sigma_2(G) = \infty\) otherwise. Our result generalizes several related results known before.