On the Dynamic Coloring of Cartesian Product Graphs

S. Akbari1,2, M. Ghanbari1, S. Jahanbekam1
1Department of Mathematical Sciences, Sharif University of Technology
2School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Abstract

Let \(G\) and \(H\) be two graphs. A proper vertex coloring of \(G\) is called a dynamic coloring if, for every vertex \(v\) with degree at least \(2\), the neighbors of \(v\) receive at least two different colors. The smallest integer \(k\) such that \(G\) has a dynamic coloring with \(k\) colors is denoted by \(\chi_2(G)\). We denote the Cartesian product of \(G\) and \(H\) by \(G \square H\). In this paper, we prove that if \(G\) and \(H\) are two graphs and \(\delta(G) \geq 2\), then \(\chi_2(G \square H) \leq \max(\chi_2(G), \chi(H))\). We show that for every two natural numbers \(m\) and \(n\), \(m, n \geq 2\), \(\chi_2(P_m \square P_n) = 4\). Additionally, among other results, it is shown that if \(3\mid mn\), then \(\chi_2(C_m \square C_n) = 3\), and otherwise \(\chi_2(C_m \square C_n) = 4\).