Let \(G\) be a connected graph of order \(n\) with Laplacian eigenvalues \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0\). The Laplacian-energy-like invariant (\(LEL\) for short) of \(G\) is defined as \(\text{LEL} = \sum_{i=1}^{n-1} \sqrt{\mu_i}\). In this paper, we investigate the asymptotic behavior of the \(LEL\) of iterated line graphs of regular graphs. Furthermore, we derive the exact formula and asymptotic formula for the \(LEL\) of square, hexagonal, and triangular lattices with toroidal boundary conditions.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.