On the Surface Areas of the Alternating Group Graph and the Split-Star Graph

Eddie Cheng1, Ke Qiu2, Zhi Zhang Shen3
1Dept. of Mathematics and Statistics Oakland University Rochester, MI 48309-4401, U.S.A.
2Dept. of Computer Science Brock University St. Catharines, Ontario, L2S 3A1 Canada
3Dept. of Computer Science and Technology Plymouth State University Plymouth, NH 03264-1595, U.S.A.

Abstract

An important invariant of an interconnection network is its surface area, the number of nodes at distance \(i\) from a node. We derive explicit formulas, via two different approaches: direct counting and generating function, for the surface areas of the alternating group graph and the split-star graph, two Cayley graphs that have been
proposed to interconnect processors in a parallel computer.