Contents

-

The Minimal Kirchhoff Index of Graphs with k Edge-Disjoint Cycles

Xiaoyan Jiang1, Huawei Dai1
1Department of Mathematics, Huizhou University, Huizhou 516007, P. R. China

Abstract

Let Sn(k;|C1|,,|Ck|) (k3) denote the n-vertex connected graph obtained from k cycles C1,,Ck with a unique common vertex by attaching ni|Ci|+k1 pendent edges to it. In this paper, we show that among all n-vertex graphs with k edge-disjoint cycles, the following graphs have minimal Kirchhoff indices: (i) for n12, S7(3;3,3,3), S8(3;3,3,4), S9(3;3,4,4), Sn(3;4,4,4) (n=10,11), S12(3;3,3,3), S12(3;3,3,4), S12(3;3,4,4), S12(3;4,4,4), S9(4;3,3,3,3), S10(4;3,3,3,4), S11(4;3,3,4,4), S12(4;3,3,3,3), S12(4;3,3,3,4), S12(4;3,3,4,4), S12(4;3,4,4,4), S11(5;3,3,3,3,3), S12(5;3,3,3,3,3), S12(5;3,3,3,3,4); (ii) for n>12, Sn(k;3,,3). Additionally, we obtain lower bounds for the Kirchhoff index of n-vertex graphs with k edge-disjoint cycles.