In this paper, we give explicit algorithms to compute generating functions of some special sequences, based on the operations of differential operators and shift operators in the non-commutative context and Zeilberger’s holonomic algorithm.
It can be found that not only ordinary generating functions and exponential generating functions but also generating functions of the general form \(\sum_{n} a_n(x)w(y, n)\) can now be computed automatically. Moreover, we generalize this approach and present explicit algorithms to compute \(2\)-variable ordinary power series generating functions and mixed-type generating functions. As applications, various examples are given in the paper.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.