Universal Graphs for Two Graph Properties

Izak Broere 1, Tomas Vetrik1
1Department of Mathematics and Applied Mathematics University of Pretoria, Pretoria, South Africa

Abstract

The graphs we consider are all countable. A graph \(U\) is universal in a given set \(\mathcal{P}\) of graphs if every graph in \(\mathcal{P}\) is an induced subgraph of \(U\) and \(U \in \mathcal{P}\). In this paper we show the existence of a universal graph in the set of all countable graphs with block order bounded by a fixed positive integer. We also investigate some classes of interval graphs and work towards finding universal graphs for them. The sets of graphs we consider are all examples of induced-hereditary graph properties.