A Generalization of a Binomial Sum for the Stirling Numbers of the Second Kind

Luis Gonzdlez1, Angelo Santana1
1Department of Mathematics, University of Las Palmas de Gran Canaria Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain

Abstract

A combinatorial sum for the Stirling numbers of the second kind is generalized. This generalization provides a new explicit formula for the binomial sum \(\sum_{k=0}^{n}k^ra^kb^{n-k} \binom{n}{k}\), where \(a, b \in \mathbb{R} – \{0\}\) and \(n, r \in \mathbb{N}\). As relevant special cases, simple explicit expressions for both the binomial sum \(\sum_{k=0}^{n} k^r\binom{n}{k} \) and the raw moment of order \(r\) of the binomial distribution \(B(n, p)\) are given. All these sums are expressed in terms of generalized \(r\)-permutations.