A New Sufficient Condition for Graphs to be \((a, b, k)\)-Critical Graphs

Sizhong Zhou1
1 School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003 People’s Republic of China

Abstract

Let \(a, b\), and \(k\) be nonnegative integers with \(2 \leq a \leq 6\) and \(b \equiv 0 \pmod{a-1}\). Let \(G\) be a graph of order \(n\) with \(n \geq \frac{(a+b-1)(2a+b-4)-a+1}{b} + k\). A graph \(G\) is called an \((a, b, k)\)-critical graph if after deleting any \(k\) vertices of \(G\), the remaining graph has an \([a, b]\)-factor. In this paper, it is proved that \(G\) is an \((a, b, k)\)-critical graph if and only if \[|N_G(X)| >\frac{(a-1)n + |X| + bk-1}{a+b-1} \] for every non-empty independent subset \(X\) of \(V(G)\), and \[\delta(G) > \frac{(a-1)n + b + bk}{a+b-1}.\] Furthermore, it is shown that the result in this paper is best possible in some sense.