On the Domination Number of Generalized Petersen Graphs \(P(ck, k)\)

Haoli Wang1, Xirong Xu2, Yuansheng Yang2, Guoging Wang3
1College of Computer and Information Engineering Tianjin Normal University, Tianjin, 300387, P. R. China
2Department of Computer Science Dalian University of Technology, Dalian, 116024, P. R. China
3Department of Mathematics Tianjin Polytechnic University, Tianjin, 300387, P. R. China

Abstract

Let \(G = (V(G), E(G))\) be a simple, connected, and undirected graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(S \subseteq V(G)\) is a \emph{dominating set} if for each \(v \in V(G)\), either \(v \in S\) or \(v\) is adjacent to some \(w \in S\). That is, \(S\) is a dominating set if and only if \(N[S] = V(G)\). The \emph{domination number} \(\gamma(G)\) is the minimum cardinality of minimal dominating sets. In this paper, we provide an improved upper bound on the domination number of generalized Petersen graphs \(P(c,k)\) for \(c \geq 3\) and \(k \geq 3\). We also prove that \(\gamma(P(4k,k)) = 2k + 1\) for even \(k\), \(\gamma(P(5k, k)) = 3k\) for all \(k \geq 1\), and \(\gamma(P(6k,k)) = \left\lceil \frac{10k}{3} \right\rceil\) for \(k \geq 1\) and \(k \neq 2\).