The \((-1)\)-Critically Duo-Free Tournaments

Mohamed Baka Elayech1, Abdeljelil Salhi 2, Hamza Si Kaddour3
1Département de la préparation Mathématiques- Physique, Institut préparatoire aux études d’ingénieur de Sfaz, Université de Sfax, BP 1172, 3000 Sfaz, Tunisie
2Département de Mathématiques, Faculté des Sciences de Gafsa, Université de Gafsa, 2112 Gafsa, Tunisie
3ICJ, Université de Lyon, Université Claude Bernard Lyon 1, 43 BD du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Abstract

Given a tournament \(T = (V, A)\), a subset \(X\) of \(V\) is an interval of \(T\) provided that for any \(a, b \in X\) and \(x \in V \setminus X\), \((a, x) \in A\) if and only if \((b, x) \in A\). For example, \(\emptyset\), \(\{x\}\) (\(x \in V\)), and \(V\) are intervals of \(T\), called trivial intervals. A two-element interval of \(T\) is called a duo of \(T\). Tournaments that do not admit any duo are called duo-free tournaments. A vertex \(x\) of a duo-free tournament is \(d\)-critical if \(T – x\) has at least one duo. In 2005, J.F. Culus and B. Jouve [5] characterized the duo-free tournaments, all of whose vertices are d-critical, called tournaments without acyclic interval. In this paper, we characterize the duo-free tournaments that admit exactly one non-d-critical vertex, called (-1)-critically duo-free tournaments.