The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those incident to a single vertex. Recently, the conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond those incident to a single vertex. It is defined as the minimum number of edges whose deletion results in a graph with no isolated vertices that has neither perfect matchings nor almost-perfect matchings. In this paper, we find this number and classify all optimal sets for the star graphs, one of the most popular interconnection networks.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.