Let \(\Sigma = (X, \mathcal{B})\) be a \(4\)-cycle system of order \(v = 1 + 8k\). A \(c\)-colouring of type \(s\) is a map \(\phi: \mathcal{B} \to C\), where \(C\) is a set of colours, such that exactly \(c\) colours are used and for every vertex \(x\), all the blocks containing \(x\) are coloured exactly with \(s\) colours. Let \(4k = qs + r\), with \(r \geq 0\). \(\phi\) is equitable if for every vertex \(x\), the set of the \(4k\) blocks containing \(x\) is partitioned into \(r\) colour classes of cardinality \(q + 1\) and \(s – r\) colour classes of cardinality \(q\). In this paper, we study colourings for which \(s | k\), providing a description of equitable block colourings for \(c \in \{s, s+1, \ldots, \lfloor \frac{2s^2+s}{3} \rfloor\}\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.