Harmonic Index of Dense Graphs

Jianxi Liu1
1Department of Applied Mathematics, School of Informatics Guangdong University of Foreign Studies, Guangzhou 510006, PR China

Abstract

The harmonic weight of an edge is defined as reciprocal of the average degree of its end-vertices. The harmonic index of a graph \(G\) is defined as the sum of all harmonic weights of its edges. In this work, we give the minimum value of the harmonic index for any \(n\)-vertex connected graphs with minimum degree \(\delta\) at least \(k(\geq n/2)\) and show the corresponding extremal graphs have only two degrees,i.e., degree \(k\)and degree \(n – 1\), and the number of vertices of degree \(k\) is as close to \(n/2\) as possible.