Given positive integers \(n\), \(k\), and \(m\), the \((n,k)\)-th \(m\)-restrained Stirling number of the first kind is the number of permutations of an \(n\)-set with \(k\) disjoint cycles of length \(\leq m\). By inverting the matrix consisting of the \((n,k)\)-th \(m\)-restrained Stirling number of the first kind as the \((n+1,k+1)\)-th entry, the \((n,k)\)-th \(m\)-restrained Stirling number of the second kind is defined. In this paper, we study the multi-restrained Stirling numbers of the first and second kinds to derive their explicit formulae, recurrence relations, and generating functions. Additionally, we introduce a unique expansion of multi-restrained Stirling numbers for all integers \(n\) and \(k\), and a new generating function for the Stirling numbers of the first kind.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.