On Closed Graphs \(I\)

Abstract

A graph is closed when its vertices have a labeling by \([n]\) with a certain property first discovered in the study of binomial edge ideals. In this article, we prove that a connected graph has a closed labeling if and only if it is chordal, claw-free, and has a property we call narrow, which holds when every vertex is distance at most one from all longest shortest paths of the graph.