Extending Matchings in Planar Odd Graphs

Shaohui Zhai1, Xiaofeng Guo2
1School of Applied Mathematics, Xiamen University of Technology, Xiamen Fujian 361024, China
2School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China

Abstract

A graph \(G\) with \(1 \leq n \leq |V(G)| – 2\) is said to be \(n\)-factor-critical if any \(n\) vertices of \(G\) are deleted, then the resultant graph has a perfect matching. An odd graph \(G\) with \(2k \leq |V(G)| – 3\) is said to be near \(k\)-extendable if \(G\) has a \(k\)-matching and any \(k\)-matching of \(G\) can be extended to a near perfect matching of \(G\). Lou and Yu [Australas. J. Combin. 29 (2004) 127-133] showed that any \(5\)-connected planar odd graph is \(3\)-factor-critical. In this paper, as an improvement of Lou and Yu’s result, we prove that any \(4\)-connected planar odd graph is \(3\)-factor-critical and also near \(2\)-extendable. Furthermore, we prove that all \(5\)-connected planar odd graphs are near \(3\)-extendable.