For an integer \(k \geq 0\), a graphical property \(P\) is said to be \(k\)-stable if whenever \(G + uv\) has property \(P\) and \(d_G(u) + d_G(v) \geq k\), where \(uv \notin E(G)\), then \(G\) itself has property \(P\). In this note, we present spectral sufficient conditions for several stable properties of a graph.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.