Let \(D(G)\) be the distance matrix of a connected graph \(G\). The distance spectral radius of \(G\) is the largest eigenvalue of \(D(G)\) and has been proposed as a molecular structure descriptor. In this paper, we study the distance spectral radius of graphs with a given independence number. Special attention is paid to graphs with a given independence number and maximal distance spectral radius.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.