Chemical indices are introduced to correlate chemical compounds’ physical properties with their structures. Among recently introduced such indices, the eccentric connectivity index of a graph \(G\) is defined as \(\xi^C(G) = \sum_{v \in V(G)} deg(v) ec(v)\), where \(deg(v)\) is the degree of a vertex \(v\) and \( ec(v)\) is its eccentricity. The extremal values of \(\xi^C(G)\) have been studied among graphs with various given parameters. In this note, we study trees with extremal values of the eccentric connectivity index with a given degree sequence. The extremal structures are identified; however, they are not unique.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.