For a given graph \(H\), a graphic sequence \(\pi = (d_1, d_2, \ldots, d_n)\) is said to be potentially \(H\)-graphic if there exists a realization of \(\pi\) containing \(H\) as a subgraph. In this paper, we characterize the potentially \(C_{2,6}\)-graphic sequences. This characterization partially answers Problem 6 in Lai and Hu [12].
1970-2025 CP (Manitoba, Canada) unless otherwise stated.