In this paper, we study the relations between degree sum and extending paths in graphs. The following result is proved. Let \(G\) be a graph of order \(n\), if \(d(u)+d(v) \geq n+k\) for each pair of nonadjacent vertices \(u,v\) in \(V(G)\), then every path \(P\) of \(G\) with \(\frac{n}{k+2} \leq 2 < n\) is extendable. The bound \(\frac{n}{k+2}+2\) is sharp.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.